快放假了,来学习吧~
GNN科研入门计划第二期:图神经网络理论、时间序列预测(时空模型)
面向对象:GNN科研入门的大三、大四、研一、博一学生
(资料图片仅供参考)
要求:掌握基本的Python、Pytorch语法
形式:线上代码讲解+作业布置/讲解+组会+研究方向讨论
周期:3个月,5次授课(全是直播形式),2h/次
价格:149元
具体内容:
空间域卷积理论
谱域卷积理论
谱域卷与空间域卷积的关系
消息传递
GCN的底层实现(PyG版)
谱域滤波器设计
项目代码讲解一:GAT、GraphSAGE
项目代码讲解二:BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation
项目代码讲解三:LON-GNN: Spectral GNNs with Learnable Orthonormal Basis
周期:3个月,8次授课(2次录播+6次直播),2h/次
价格:199元
注意:项目会有一定难度,都是最新的科研论文项目代码讲解
具体内容:
Graph WaveNet: Graph WaveNet for Deep Spatial-Temporal Graph Modeling
Ada-STNet: Adaptive Spatio-temporal Graph Neural Network for traffic forecasting
AdapGL: Adaptive Graph Spatial-Temporal Transformer Network for Traffic Flow Forecasting
TSAT: Expressing Multivariate Time Series as Graphs with Time Series Attention
STGODE: Spatial-Temporal Graph ODE Networks for Traffic Flow Forecasting
TLNets: Transformation Learning Networks for long-range time-series prediction
GRAM-ODE: Graph-based Multi-ODE Neural Networks for SpatioTemporal Traffic Forecasting
二选一
GraFITi: Forecasting Irregularly Sampled Time Series using Graphs
STID: Spatial-Temporal Identity: A Simple yet Effective Baseline for Multivariate Time Series Forecasting
标签: